A Differential Subthreshold SRAM Cell for Ultra-Low Voltage Embedded Computing Applications
نویسندگان
چکیده
With scaling of CMOS technology, data stability of SRAM at ultra-low supply voltage has become a critical issue for embedded wearable computing applications. In this work, we suggest an advanced 8T SRAM cell which can operate properly in subthreshold voltage regime. The cell utilizes a differential swing in the read and write path, and allows an efficient column-interleaving structure. In the read operation, a column-wise assistline scheme of the cell leads to the cell being unaffected by the read disturbance. In addition, the bitcell keeps the noise-vulnerable data ‘low’ node voltage close to the ground level during the dummy-read operation, thus producing near-ideal voltage transfer characteristics essential for robust SRAM functionality. In the write access, the boosted wordline facilitates to change the contents of the memory bit. Implementation results with 180 nm CMOS technology exhibit that the proposed cell remains unaffected by the read disturbance, while achieves 59 % higher dummyread stability and 3.7 times better write-ability at a subthreshold supply voltage compared to the conventional 6T SRAM cell. The stability enhancement provided with the proposed bit-cell is confirmed under process, voltage and temperature variations.
منابع مشابه
Design of 1024*16 Cm8 Ultra Low Voltage Sram with Self Time Power Reduction Technique
Technology scaling has enabled us to integrate both memory and logic circuits on a single chip. However, the performance of embedded memory and especially SRAM (Static Random Access Memory) that is widely used in the industry as on the on-chip memory cache in ultra low voltage applications can adversely affect the speed and power efficiency of the overall system. This report discusses the desig...
متن کاملTemperature-adaptive voltage scaling for enhanced energy efficiency in subthreshold memory arrays
Static random access memory (SRAM) circuits optimized for minimum energy consumption typically operate in the subthreshold regime with ultra low-power-supply voltages. Both the read and the write propagation delays of a subthreshold memory circuit are significantly reduced with an increase in the die temperature. The excessive timing slack observed in the clock period of constant-frequency subt...
متن کاملUltra low voltage and low power Static Random Access Memory design using average 6.5T technique
Power Stringent Static Random Access Memory (SRAM) design is very much essential in embedded systems such as biomedical implants, automotive electronics and energy harvesting devices in which battery life, input power and execution delay are of main concern. With reduced supply voltage, SRAM cell design will go through severe stability issues. In this paper, we present a highly stable average n...
متن کاملAn Ultra High CMRR Low Voltage Low Power Fully Differential Current Operational Amplifier (COA)
this paper presents a novel fully differential (FD) ultra high common mode rejection ratio (CMRR) current operational amplifier (COA) with very low input impedance. Its FD structure that attenuates common mode signals over all stages grants ultra high CMRR and power supply rejection ratio (PSRR) that makes it suitable for mixed mode and accurate applications. Its performance is verified by HSPI...
متن کاملUltra-Low Power, Process-Tolerant 10T (PT10T) SRAM with Improved Read/Write Ability for Internet of Things (IoT) Applications
Abstract: An ultra-low power (ULP), power gated static random access memory (SRAM) is presented for Internet of Things (IoT) applications, which operates in sub-threshold voltage ranges from 300mV to 500mV. The proposed SRAM has tendency to operate in low supply voltages with high static and dynamic noise margins. The IoT application involves battery enabled low leakage memory architecture in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017